Uma abordagem dinâmica para detecção e seguimento de face em vídeos coloridos em ambientes não controlados

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Passarinho, Cornélia Janayna Pereira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Espírito Santo
BR
Doutorado em Engenharia Elétrica
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Elétrica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufes.br/handle/10/9698
Resumo: Face detection in images is a growing branch of computer vision, regarding its potential for several applications. Identification, authentication and recognition of individuals are some tasks that are performed by systems that rely on such techniques. In this thesis, an approach is described to to detect and track a face in color uncontrolled videos. The Dynamic Support Vector Tracker (from the Brazilian Portuguese Seguidor Dinâmico com Vetores de Suporte - SDVS) framework here proposed combines face detection with target tracking, through integrating illumination compensation, skin color detection, Gabor features and a discrete Kalman filter, thus implementing an integrated system. Such architecture differs from others found in the literature for being able to detect and track faces in unconstrained outdoor videos, under real-world conditions, with different skin tones, tracking arbitrary poses of the face and for being capable of recovering failures in face detection. To validate the SDVS, tests were performed on videos from the Honda / UCSD and David Ross Video Databases, as well as videos captured at the Goiabeiras campus of the Federal University of Espírito Santo. These videos were categorized according to the degree of difficulty (challenge) to be treated, and the results of applying SDVS to them were compared with the correspondent results associated to a state of the art technique in order to evaluate the performance of the SDVS. The results suggest that the approach here proposed and the SDVS system implemented are validated.