Estudo numérico da aplicação do sistema gerador de nitrogênio para remoção de depósitos de parafina

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Cavalcante, Rafael Ferreira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Espírito Santo
BR
Mestrado em Engenharia Química
Centro de Ciências Agrárias e Engenharias
UFES
Programa de Pós-Graduação em Engenharia Química
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufes.br/handle/10/17679
Resumo: Offshore oil exploration has significant challenges, including the formation of hydrate and paraffin wax deposits, causing billionaire losses to the oil and natural gas industry. The nitrogen generating system (SGN) is a thermal and chemical technique applied to remove these deposits, employing an exothermic chemical reaction that promotes paraffin wax melting. Pipe-in-pipe (PIP) systems with thermal insulation layers are common in this scenario, aiming to optimize the system’s thermal efficiency. This dissertation conducts to a numerical study of an SGN application in a multilayer PIP system with paraffin wax blockage, to investigate the efficiency and feasibility of the technique in removing the deposit without compromising the PIP’s insulation materials. The mathematical formulation yields to a nonlinear transient two dimensional heat conduction model with chemical reaction and phase change. The solution of the transient problem employs the explicit Euler method for time integration, with spatial derivatives computed directly from the temperature nodal values. The results demonstrate that the SGN’s chemical reagents are quickly consumed, generating a high amount of heat, sufficient to remove the paraffin wax deposit. The simulation reaches a liquid fraction of 0.95. The results also show that the temperature of the thermal insulation layers exceeds their ideal working temperature, but remains below their melting point, reaching 140 ◦C in the innermost insulation layer. Additionally, the results indicate that the released heat is strongly dependent on the pH at which the reaction occur