SMART SPR: identificação e análise das respostas fornecidas por sensores baseados em ressonância de plasmons de superfície

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Gomes, Júlio Cartier Maia
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural do Semi-Árido
Brasil
Centro de Ciências Sociais Aplicadas e Humanas - CCSAH
UFERSA
Programa de Pós-Graduação em Ciência da Computação
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufersa.edu.br/handle/prefix/5545
Resumo: Sensors based on Surface Plasmon Resonance (SPR) allow the evaluation of refractive index shifts, with the objective of detecting molecular interactions in food safety, environmental protection, detection of different chemical, biochemical and organic compounds, among several other applications. The reliability of the information transmitted by an SPR sensor must be guaranteed, given that wrong information can cause consequences, such as, misinterpretations and manipulations of molecular bonds. To improve and attest to the quality of the responses provided in the SPR-based sensor, this work investigates the use of different machine learning techniques and descriptors in acquired sensorgrams. More specifically, this work seeks to identify patterns and anomalies in their behavior in the SPR responses and to analyze the impact of these learning techniques on the quality of the sensor. The results obtained through the statistical analysis allowed to conclude that the sensorgram temporal descriptor obtained a better performance with the classification and that the use of linear regression made it possible to analyze the areas of interest in the sensorgram with satisfactory results, thus creating an SPR sensor with a intelligent response. This work also resulted in the creation of a graphical interface for the classification of sensorgrams. That way, the scientific contribution is the application of machine learning techniques that allowed to identify, analyze and classify the responses of the sensorgram