Remoção do corante têxtil c.i. reactive blue 203 utilizando casca de manihot esculenta crantz como adsorvente

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Silva, Simone Keily Costa
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural do Semi-Árido
Brasil
Centro de Engenharias - CE
UFERSA
Programa de Pós-Graduação em Ciência e Engenharia de Materiais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufersa.edu.br/handle/prefix/5349
Resumo: The textile industry consumes a significant volume of water in the dyeing process of fibers. The wastewater generated in processing, in addition to turbidity, due to the presence of dyes that do not fixate in fiber during the dyeing process, are harmful to the aquatic environment and to human beings. This wastewater must pass through a treatment process before being released into water bodies. The treatment of contaminated water with the use of bioadsorption as an alternative has advantages of low cost and material recycling natural waste. Based on the above, the objective of this work was to evaluate the adsorption capacity of the textile dye C.I. REACTIVE BLUE 203 in shell of cassava (Manihot Esculenta Crantz), waste from cassava flour industry. The bark of cassava (Manihot Esculenta Crantz) was obtained in the region of Lagoa Salgada - RN. Initially the material was subjected to washing for removal of impurities and dried in an oven at 110°C. After drying, the material was ground, sifted and weighed. The particle size chosen was the particle diameter (1 mm, 0, 0, 5 mm and 297 mm). The point of zero charge of the surface of the adsorbent material was pH equal to 5. The maximum capacity of adsorption, in 24 hours of contact of disperse dyestuff in the bark of cassava, varying the conditions of pH and particle size were as follows: (Qmax = 85.18 mg.g-1; pH = 1; 30° C; 180 rpm; 16 mesh); (Qmax = 52.3059 mg g-1; pH = 0; 30° C; 180 rpm; 32 mesh); (Qmax = 92.9183 mg g-1; pH = 0; 30° C; 180 rpm; 48 mesh). The kinetic description of the models that best represented the process were the pseudo-first order and order pseudo- second The use of cassava fresh bark turned out to be an alternative in the removal of the dye