Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
FRIGIERI, Edielson Prevato |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação: Mestrado - Engenharia de Produção
|
Departamento: |
IEPG - Instituto de Engenharia de Produção e Gestão
|
País: |
Não Informado pela instituição
|
Link de acesso: |
https://repositorio.unifei.edu.br/jspui/handle/123456789/929
|
Resumo: |
O objetivo deste trabalho é avaliar a emissão de sinais acústicos durante o processo de torneamento do aço ABNT 52100 endurecido e identificar os parâmetros do sinal que sejam capazes de representar a rugosidade resultante da peça. Partindo desses parâmetros, propõe-se um novo método de monitoramento do processo utilizando modelos de misturas de Gaussianas (GMM). A principal característica desta nova abordagem é a utilização do som como meio de monitoramento. Além de apresentar vantagens como a facilidade de aquisição de dados e o baixo custo dos sensores (microfones), ainda é um sinal pouco explorado em técnicas de monitoramento. Para correlacionar a rugosidade resultante do processo de torneamento com os parâmetros do som emitido, técnicas de processamento de sinais digitais foram utilizadas para a extração de parâmetros como perfil de energia e coeficientes mel-cepstrais (MFCC). Estes parâmetros foram utilizados para treinar modelos de misturas de Gaussianas para representar cada grupo de rugosidade identificado. No treinamento dos modelos GMM, foram utilizadas 4 e 8 gaussianas a fim de avaliar o impacto no desempenho do método proposto. Ao apresentar o conjunto de sinais de teste aos modelos treinados, obteve-se uma superioridade nos modelos treinados com MFCC, apresentando uma taxa de acerto média de 94,27%. Já o número de Gaussianas não proporcionou aumento significativo de desempenho. A partir destes resultados, concluiu-se que o sinal acústico (som), através de parâmetros como os coeficientes mel-cepstrais, pode ser utilizado como forma de identificar variações no comportamento do processo, principalmente a rugosidade resultante da peça, o que permite o monitoramento da qualidade do processo de forma não destrutiva. |