Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
CORREA, Vinícius Henrique Geraldo
 |
Orientador(a): |
RAMOS, Alexandre Carlos Brandão
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Universidade Federal de Itajubá
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação: Mestrado - Ciência e Tecnologia da Computação
|
Departamento: |
IESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informação
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.unifei.edu.br/jspui/handle/123456789/4135
|
Resumo: |
A utilização de Veículos Aéreos Não Tripulados (VANTs) em operações de busca e salvamento tem crescido significativamente, principalmente devido à redução de custos e ao menor risco associado. No entanto, a eficácia desses veículos está intimamente ligada à qualidade dos sensores utilizados para captura e identificação de alvos, tornando a investigação desses equipamentos uma área crucial. Este estudo apresenta uma revisão sistemática da literatura sobre a aplicação de Redes Adversariais Generativas (GANs) em imagens geradas por VANTs com foco em busca e resgate. Além disso, introduzimos uma metodologia que utiliza a ferramenta Real-ESRGAN para aprimorar imagens obtidas por VANTs durante missões de busca e salvamento, com foco em sensores que operam na faixa infravermelha. Os resultados da aplicação dessa técnica em nosso conjunto de dados, combinados com a validação utilizando a ferramenta YOLOv8, revelam melhorias significativas na qualidade das imagens. Isso sugere que a abordagem proposta pode ter aplicações valiosas no pós-processamento e na identificação de alvos humanos durante operações de busca e resgate. |