Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
CARDOSO, Júlio Cesar Silveira
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Orientador(a): |
BRAGA, Denis de Carvalho
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Itajubá
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação: Mestrado - Matemática
|
Departamento: |
IEPG - Instituto de Engenharia de Produção e Gestão
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.unifei.edu.br/jspui/handle/123456789/4136
|
Resumo: |
Esta dissertação trata de uma bifurcação local para aplicações suaves no plano, dependendo de um parâmetro real, chamada bifurcação de Neimark-Sacker de codimensão 1, que, em certo sentido, guarda muitas semelhanças com a bifurcação de Hopf para equa- ções diferenciais ordinárias. Em ambas as bifurcações, a mudança na estabilidade de um ponto xo ou ponto de equilíbrio, junto com uma condição de transversalidade associada com certos autovalores da matriz Jacobiana calculada no ponto, além de uma ou mais condições de não degenerescência, permite o surgimento ou desaparecimento de uma curva fechada invariante pela dinâmica no retrato de fase quando o parâmetro é variado. Este tema foi escolhido devido a sua importância no estudo de sistemas dinâmicos discretos e aplicações em diversas áreas da ciência e, neste sentido, o Teorema da Bifurcação de Neimark-Sacker de codimensão 1 é enunciado e demonstrado no caso planar e empregado no estudo de dois modelos biológicos conhecidos na literatura, a saber, a equação logística com atraso e a equação predador-presa discreta. |