Estudo da bifurcação de Neimark-Sacker

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: CARDOSO, Júlio Cesar Silveira lattes
Orientador(a): BRAGA, Denis de Carvalho lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Itajubá
Programa de Pós-Graduação: Programa de Pós-Graduação: Mestrado - Matemática
Departamento: IEPG - Instituto de Engenharia de Produção e Gestão
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.unifei.edu.br/jspui/handle/123456789/4136
Resumo: Esta dissertação trata de uma bifurcação local para aplicações suaves no plano, dependendo de um parâmetro real, chamada bifurcação de Neimark-Sacker de codimensão 1, que, em certo sentido, guarda muitas semelhanças com a bifurcação de Hopf para equa- ções diferenciais ordinárias. Em ambas as bifurcações, a mudança na estabilidade de um ponto xo ou ponto de equilíbrio, junto com uma condição de transversalidade associada com certos autovalores da matriz Jacobiana calculada no ponto, além de uma ou mais condições de não degenerescência, permite o surgimento ou desaparecimento de uma curva fechada invariante pela dinâmica no retrato de fase quando o parâmetro é variado. Este tema foi escolhido devido a sua importância no estudo de sistemas dinâmicos discretos e aplicações em diversas áreas da ciência e, neste sentido, o Teorema da Bifurcação de Neimark-Sacker de codimensão 1 é enunciado e demonstrado no caso planar e empregado no estudo de dois modelos biológicos conhecidos na literatura, a saber, a equação logística com atraso e a equação predador-presa discreta.