Previsor neural de carga elétrica baseado em análise de multiresolução via wavelets e técnicas de reconstrução do espaço-fase

Detalhes bibliográficos
Ano de defesa: 2003
Autor(a) principal: REIS, Agnaldo José da Rocha lattes
Orientador(a): SILVA, Alexandre Pinto Alves da lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Itajubá
Programa de Pós-Graduação: Programa de Pós-Graduação: Doutorado - Engenharia Elétrica
Departamento: IESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informação
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.unifei.edu.br/jspui/handle/123456789/3764
Resumo: A importância da previsão de carga a curto prazo tem crescido ultimamente. Com a desregulamentação e a competição advinda desse processo, a previsão do preço de energia se transformou em uma atividade bastante lucrativa. A previsão das cargas das barras é essencial para alimentar métodos analíticos utilizados para determinar os preços de energia. A variabilidade e a não estacionariedade das cargas estão ficando cada vez piores devido à dinâmica dos preços de energia. Além disso, o número de cargas nodais a serem previstas não permite interações freqüentes com os especialistas em previsão de carga. Portanto, previsores de carga mais autônomos são necessários nesse novo cenário competitivo. Esta tese apresenta duas linhas de pesquisa diferentes. Na primeira delas, duas estratégias para a utilização da transformada wavelet na previsão de carga via redes neurais são apresentadas. A primeira estratégia é nova. Ela consiste na criação de um modelo de previsão de carga cujas entradas são baseadas na informação da série de carga original e na informação fornecida pelas subséries no domínio wavelet. Já na segunda estratégia, o comportamento futuro da carga é conseguido através da combinação de previsões independentes de cada subsérie no domínio wavelet. A segunda linha de pesquisa investiga a aplicabilidade de uma metodologia não linear baseada no método de coordenadas em atraso para a seleção das variáveis de entrada mais significativas para previsores neurais. Esse critério é comparado com um outro critério linear baseado na função de autocorrelação. Com a utilização das metodologias supraditas, objetiva-se o desenvolvimento de previsores de carga mais robustos. Para testá-las, dados horários reais de carga e temperatura de uma concessionária de energia elétrica norte-americana são utilizados.