Análise comparativa entre o desempenho dos métodos de regressão não linear e redes neurais artificiais através do planejamento de experimentos

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: LOPES, Marina Fernandes Branco Pitanga lattes
Orientador(a): BALESTRASSI, Pedro Paulo lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Itajubá
Programa de Pós-Graduação: Programa de Pós-Graduação: Mestrado - Engenharia de Produção
Departamento: IEPG - Instituto de Engenharia de Produção e Gestão
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.unifei.edu.br/jspui/handle/123456789/2300
Resumo: A modelagem de dados é uma técnica que auxilia a tomada de decisão e a resolução de diversos tipos de problemas em sistemas reais. Entretanto, a escolha da melhor técnica para modelar um sistema real nem sempre é uma tarefa fácil, pois cada sistema possui suas características específicas e não é possível inferir que o melhor método para determinada situação será o melhor em outros contextos. Devido a essa necessidade de generalização, o presente trabalho tem como objetivo apresentar uma análise comparativa entre o desempenho dos métodos de regressão não linear (RNL) e redes neurais artificiais (RNAs) na modelagem de conjuntos de dados gerados através de um planejamento de experimentos (DOE), de modo a simular diferentes cenários nos quais os métodos serão aplicados. Dessa forma, os conjuntos de dados foram modelados por cada um dos métodos e suas respostas foram avaliadas através do coeficiente de determinação (R²). Os resultados mostraram que os métodos estudados apresentam diferenças estatisticamente significativas, com um nível de significância de 5%. Além disso, concluiu-se nesta pesquisa que se os experimentadores conhecem a priori o modelo não linear que define a relação entre as variáveis de entrada e a variável resposta, a regressão não linear supera a rede neural artificial em termos de R².