Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
LOPES, Marina Fernandes Branco Pitanga
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Orientador(a): |
BALESTRASSI, Pedro Paulo
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Itajubá
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação: Mestrado - Engenharia de Produção
|
Departamento: |
IEPG - Instituto de Engenharia de Produção e Gestão
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.unifei.edu.br/jspui/handle/123456789/2300
|
Resumo: |
A modelagem de dados é uma técnica que auxilia a tomada de decisão e a resolução de diversos tipos de problemas em sistemas reais. Entretanto, a escolha da melhor técnica para modelar um sistema real nem sempre é uma tarefa fácil, pois cada sistema possui suas características específicas e não é possível inferir que o melhor método para determinada situação será o melhor em outros contextos. Devido a essa necessidade de generalização, o presente trabalho tem como objetivo apresentar uma análise comparativa entre o desempenho dos métodos de regressão não linear (RNL) e redes neurais artificiais (RNAs) na modelagem de conjuntos de dados gerados através de um planejamento de experimentos (DOE), de modo a simular diferentes cenários nos quais os métodos serão aplicados. Dessa forma, os conjuntos de dados foram modelados por cada um dos métodos e suas respostas foram avaliadas através do coeficiente de determinação (R²). Os resultados mostraram que os métodos estudados apresentam diferenças estatisticamente significativas, com um nível de significância de 5%. Além disso, concluiu-se nesta pesquisa que se os experimentadores conhecem a priori o modelo não linear que define a relação entre as variáveis de entrada e a variável resposta, a regressão não linear supera a rede neural artificial em termos de R². |