Detecção de danos em estruturas por meio de técnicas de redes neurais artificiais e algoritmos genéticos.

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: LOPES, Patricia da Silva
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Programa de Pós-Graduação: Mestrado - Engenharia Mecânica
Departamento: IEM - Instituto de Engenharia Mecânica
País: Não Informado pela instituição
Link de acesso: https://repositorio.unifei.edu.br/jspui/handle/123456789/1786
Resumo: A detecção de danos é um importante ramo da engenharia que possibilita que medidas corretivas sejam aplicadas para garantir a segurança estrutural. O tempo de vida de qualquer estrutura pode ser predito por meio da correta determinação do dano. O objetivo do trabalho é a detecção de danos em estruturas por meio de duas técnicas, otimização global e identificação de parâmetros. A modelagem térmica do problema de detecção de danos é efetuada por meio do método de elementos de contorno. Técnicas de otimização são utilizadas para a minimização da diferença entre os valores de potencial medidos na estrutura e os valores de potencial calculados pelo programa de localização do dano. Como esta diferença é, em geral, não-convexa, os algoritmos genéticos são utilizados para resolver o problema de otimização global. Redes neurais artificiais que identificam os parâmetros desconhecidos dos danos estruturais também são utilizadas para resolver o problema inverso de detecção de danos. Esta técnica simula o comportamento não-linear entre os valores de potenciais internos na estrutura e os parâmetros do dano. Neste trabalho, uma comparação entre as diferentes técnicas é realizada e os resultados são discutidos para o problema.