Determinação das condições operativas de microredes baseada em redes neurais

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: MONTEIRO, Luiz Fernando Ribas lattes
Orientador(a): FERREIRA, Luis Henrique de Carvalho lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Itajubá
Programa de Pós-Graduação: Programa de Pós-Graduação: Mestrado - Engenharia Elétrica
Departamento: IESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informação
País: Brasil
Palavras-chave em Português:
ANN
Área do conhecimento CNPq:
Link de acesso: https://repositorio.unifei.edu.br/jspui/handle/123456789/2262
Resumo: O aumento da inserção de geração renovável, principalmente eólica e solar, traz novos desafios para o planejamento e operação de sistemas elétrico de potência devido à sua dependência de condições climáticas. Nesta perspectiva, esta dissertação tem o objetivo de propor uma metodologia com base em Redes Neurais Artificiais (ANN) de reconhecimento de padrão e mapa auto organizável para auxiliar no planejamento e operação do sistema de potência. Neste contexto, as condições operacionais que podem levar o sistema à violação dos limites de tensão podem ser identificadas possibilitando a realização de ações de controle corretivas. Além disso, a abordagem proposta é capaz de identificar a unidade específica responsável por conduzir o sistema a uma condição operativa insatisfatória. Para isso, a metodologia é testada em uma microrrede representada pelo sistema IEEE 34-barras trifásico desequilibrado modificado, considerando o emprego de geração eólica e solar. O conjunto de dados de condições operativas satisfatórias e insatisfatórias são obtidos empregando a simulação de Monte Carlo. Para este propósito, o fluxo de potência por varredura backward-forward é empregado. Em seguida esses dados são fornecidos às ANNs para treinamento, validação e teste. Os resultados obtidos indicam uma metodologia robusta capaz de auxiliar na tomada de decisão e determinar ações de controle durante a operação do sistema com alta inserção de renováveis evitando assim sobretensões.