Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
MONTEIRO, Luiz Fernando Ribas
 |
Orientador(a): |
FERREIRA, Luis Henrique de Carvalho
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Itajubá
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação: Mestrado - Engenharia Elétrica
|
Departamento: |
IESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informação
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.unifei.edu.br/jspui/handle/123456789/2262
|
Resumo: |
O aumento da inserção de geração renovável, principalmente eólica e solar, traz novos desafios para o planejamento e operação de sistemas elétrico de potência devido à sua dependência de condições climáticas. Nesta perspectiva, esta dissertação tem o objetivo de propor uma metodologia com base em Redes Neurais Artificiais (ANN) de reconhecimento de padrão e mapa auto organizável para auxiliar no planejamento e operação do sistema de potência. Neste contexto, as condições operacionais que podem levar o sistema à violação dos limites de tensão podem ser identificadas possibilitando a realização de ações de controle corretivas. Além disso, a abordagem proposta é capaz de identificar a unidade específica responsável por conduzir o sistema a uma condição operativa insatisfatória. Para isso, a metodologia é testada em uma microrrede representada pelo sistema IEEE 34-barras trifásico desequilibrado modificado, considerando o emprego de geração eólica e solar. O conjunto de dados de condições operativas satisfatórias e insatisfatórias são obtidos empregando a simulação de Monte Carlo. Para este propósito, o fluxo de potência por varredura backward-forward é empregado. Em seguida esses dados são fornecidos às ANNs para treinamento, validação e teste. Os resultados obtidos indicam uma metodologia robusta capaz de auxiliar na tomada de decisão e determinar ações de controle durante a operação do sistema com alta inserção de renováveis evitando assim sobretensões. |