Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
OLIVEIRA, Marcos André de
 |
Orientador(a): |
PEREIRA, Luiz Antonio Alcântara
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Itajubá
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação: Doutorado - Engenharia Mecânica
|
Departamento: |
IEM - Instituto de Engenharia Mecânica
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.unifei.edu.br/jspui/handle/123456789/2292
|
Resumo: |
Existem duas técnicas para controle do comportamento destrutivo da esteira e do desprendimento de estruturas vorticosas atrás de corpos rombudos. Na primeira está o método ativo, que necessita de alguma fonte externa de energia para controle do escoamento. Na segunda está o método passivo, que se caracteriza pela modificação da geometria do corpo. Assim, a combinação da rugosidade superficial de um corpo (controle passivo) e a aproximação desse corpo de uma superfície plana horizontal móvel (controle ativo) foi recentemente classificada como uma “técnica de controle híbrido de desprendimento e supressão de vórtices”, durante o desenvolvimento desta Tese de Doutorado. Contudo, é relatado na literatura que algumas restrições impostas pelos atuais modelos de rugosidade necessitam ser superadas. Além do mais, há escassez de resultados na literatura para combinação dos efeitos de rugosidade e solo. E para certas condições de escoamento, são muito raros os resultados de uma terceira sobreposição, que seria o efeito de vibração estrutural do corpo induzida pelo desprendimento de vórtices. Principalmente, se são considerados altos números de Reynolds de interesse prático. Nesta Tese de Doutorado é concebido e desenvolvido um novo modelo de rugosidade, que é integrado ao Método de Vórtices Discretos que já apresenta uma adaptação com a inclusão de um modelo de turbulência de Simulação de Grandes Escalas. Com essa contribuição, simulações e investigações do efeito da rugosidade superficial de um cilindro bidimensional no controle do desprendimento de vórtices deste, são realizadas para escoamentos em uma ampla faixa de altos números de Reynolds. Outras configurações de escoamentos são também simuladas para testar a sensibilidade do método computacional. A programação paralela no padrão OpenMP é implementada para redução do tempo de processamento final. O novo modelo de rugosidade foi implementado com sucesso, e foi nomeado de Modelo Lagrangeano Dinâmico de Rugosidade – MLDRVL. Os regimes de formação de vórtices a jusante do corpo e a redução da força de arrasto foram mapeados em concordância com a física do problema. A crise do arrasto foi capturada e investigada para oito diferentes superfícies do cilindro, incluindo escoamentos nos regimes crítico e supercrítico, os quais apresentam maior dificuldade para serem numericamente simulados. Particularmente, os resultados para o coeficiente de arrasto apresentam boa aproximação aos valores obtidos experimentalmente. Sendo que o método desenvolvido foi capaz de capturar, inclusive, a chamada bolha de separação, que é um fenômeno de difícil reprodução, tanto por simulação numérica como por investigação experimental. A rugosidade superficial do cilindro isolado de outras fronteiras sólidas foi capaz de reduzir em até 51,6% o coeficiente de arrasto, em comparação com uma superfície lisa nas mesmas condições de escoamento. A aplicação da técnica híbrida de controle de desprendimento de vórtices permitiu reduções do coeficiente de arrasto da ordem de 45,4% para o cilindro estacionário e de 57,7% para o cilindro vibrando na direção longitudinal ao escoamento incidente. Por fim, a programação paralela permitiu significativa redução no tempo de processamento de uma simulação típica, em torno de 67% em média. |