Driver’s behavior classification in vehicular communication networks for commercial vehicles

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: ALMEIDA, Lucas Gomes de Almeida lattes
Orientador(a): KUEHNE, Bruno Tardiole lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Itajubá
Programa de Pós-Graduação: Programa de Pós-Graduação: Mestrado - Ciência e Tecnologia da Computação
Departamento: IESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informação
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.unifei.edu.br/jspui/handle/123456789/3772
Resumo: Vehicles are becoming more intelligent and connected due to the demand for faster, efficient, and safer transportation. For this transformation, it was necessary to increase the amount of data transferred between electronic modules in the vehicular network since it is vital for an intelligent system’s decision-making process. Hundreds of messages travel all the time in a vehicle, creating opportunities for analysis and development of new functions to assist the driver’s decision. Given this scenario, the dissertation presents the results of research to characterize driving styles of drivers using available information in vehicular communication network. This master thesis focuses on the process of information extraction from a vehicular network, analysis of the extracted features, and driver classification based on the extracted data. The study aims to identify aggressive driving behavior using real-world data collected from five different trucks running for a period of three months. The driver scoring method used in this study dynamically identifies aggressive driving behavior during predefined time windows by calculating jerk derived from the acquired data. In addition, the K-Means clustering technique was explored to group different behaviors into data clusters. Chapter 2 provides a comprehensive overview of the theoretical framework necessary for the successful development of this thesis. Chapter 3 details the process of data extraction from real and uncontrolled environments, including the steps taken to extract and refine the data. Chapter 4 focuses on the study of features extracted from the preprocessed data, and Chapter 5 presents two methods for identifying or grouping the data into clusters. The results obtained from this study have advanced the state-of-the-art of driver behavior classification and have proven to be satisfactory. The thesis addresses the gap in the literature by using data from real and uncontrolled environments, which required preprocessing before analysis. Furthermore, the study represents one of the pioneering studies conducted on commercial vehicles in an uncontrolled environment. In conclusion, this thesis provides insights into the development of driver behavior classification models using real-world data. Future research can build upon the techniques presented in this study and further refine the classification models. The thesis also addresses the threats to validity that were mitigated and provides recommendations for future research.