Robust classification of advanced power quality disturbances in smart grids

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: ALMEIDA, Gabriel Caldas Sardinha de lattes
Orientador(a): RIBEIRO, Paulo Fernando lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Itajubá
Programa de Pós-Graduação: Programa de Pós-Graduação: Mestrado - Engenharia Elétrica
Departamento: IESTI - Instituto de Engenharia de Sistemas e Tecnologia da Informação
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.unifei.edu.br/jspui/handle/123456789/2599
Resumo: A inserção de novos dispositivos na rede, aumento do fluxo de dados, geração intermitente e a informatização massiva aumentaram consideravelmente a complexidade dos sistemas elétricos atuais. Esse aumento resultou em mudanças necessárias, como a necessidade de redes elétricas mais inteligentes para se adaptarem a essa realidade diferente. A nova ger ação de técnicas de Inteligência Artificial, representada pelo "Big Data", Aprendizado de Máquina ("Machine Learning"), Aprendizagem Profunda e Reconhecimento de Padrões representa uma nova era na sociedade e no desenvolvimento global baseado na infor mação e no conhecimento. Com as mais recentes Redes Inteligentes, o uso de técnicas que utilizem esse tipo de inteligência será ainda mais necessário. Esta dissertação investiga o uso de processamento de sinais avançado e também algoritmos de Aprendizagem de Máquina para desenvolver um classificador robusto de distúrbios de qualidade de energia no contexto das Redes Inteligentes. Para isso, modelos já conhecidos de alguns proble mas de qualidade foram gerados junto com ruídos aleatórios para que o sistema fosse similar a aplicações reais. A partir desses modelos, milhares de sinais foram gerados e a Transformada Wavelet Discreta foi usada para extrair as principais características destas perturbações. Esta dissertação tem como objetivo utilizar algoritmos baseados no con ceito de Aprendizado de Máquina para classificar os dados gerados de acordo com suas classes. Todos estes algoritmos foram treinados, validados e por fim, testados. Além disso, a acurácia e a matriz de confusão de cada um dos modelos foi apresentada e analisada. As etapas de geração de dados, extração das principais características e otimização dos dados foram realizadas no software MATLAB. Uma toolbox específica deste programa foi us ada para treinar, validar e testar os 27 algoritmos diferentes e avaliar cada desempenho. Todas as etapas do trabalho foram previamente idealizadas, possibilitando seu correto desenvolvimento e execução. Os resultados mostram que o classificador "Cubic Support Vector Machine" obteve a máxima precisão entre todos os algoritmos, indicando a eficácia do método proposto para classificação. As considerações sobre os resultados foram inter pretadas, como por exemplo a explicação da performance de cada técnica, suas relações e suas justificativas.