Sistema de controle inteligente baseado em redes neurais artificiais aplicado ao processo de destilação extrativa.
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Ciências e Tecnologia - CCT PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA UFCG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/17075 |
Resumo: | Os processos de destilação extrativa são amplamente utilizados nas indústrias químicas para a separação de misturas não ideais, por exemplo, na desidratação de etanol pelo seu grande interesse industrial por causa de suas diversas aplicações, exigindo que a produção se ajuste as diferentes demandas do mercado, principalmente no que diz respeito à composição. Além disso, rígidas especificações de qualidade do produto e rigorosas regulamentações ambientais exigem que o sistema de controle possua alto grau de desempenho. Devido à dificuldade da medição de composição de uma forma contínua, o controle em coluna de destilação ainda é um desafio, e uma alternativa muito utilizada é a instalação de sensores de temperatura para inferir a concentração. Porém para misturas multicomponentes não-ideais, com comportamento termodinâmico complexo, a temperatura é um fraco indicador da composição. O objetivo principal desse trabalho é desenvolver alternativas de controle inteligente, baseadas em Redes Neurais Artificiais, capazes de fazer com que a composição dos produtos em um processo de destilação extrativa siga em direção a novas especificações e que, independente dos distúrbios, mantenham a saída no set-point estabelecido. As malhas de controle incluem o controle convencional, o avançado e o baseado em modelos, evitando o uso de analisadores de composição caros e de alta manutenção. Os modelos foram baseados no uso de Redes Neurais Artificiais (RNA), desenvolvidas no software MATLAB®, sendo necessário usar tantos dados quantos possíveis a fim de construir modelos que cubram uma larga faixa de condições operacionais do processo, os quais foram obtidos com auxílio do Aspen Plus™. Uma análise feita no Aspen Plus Dynamics™ mostrou que o controle inteligente por meio da modificação de set-points de controladores presentes na instrumentação original é capaz de fazer com que os distúrbios na alimentação não afetem a qualidade do produto final ou através de um simples comando do operador, o sistema de controle é capaz de utilizar uma lógica matemática para modificar a composição do produto a fim de alcançar a especificação desejada dependendo do planejamento da produção. Diante dessas características, o controle inteligente, com relação ao controle convencional, apresentou melhor desempenho e flexibilidade para o problema proposto, com baixa oscilação e respostas rápidas. |