Algoritmo heurístico de retroalimentação inclusiva para regressão de dados de processo.
Ano de defesa: | 2022 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Ciências e Tecnologia - CCT PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA UFCG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/26560 |
Resumo: | Este trabalho apresenta um algoritmo de aprendizado de máquina automatizado (AutoML) sitemático e simples. A principal contribuição é produzir o modelo de regressão mais simples, sempre que possível (ex.: modelo de regressão polinomial de segunda ordem via seleção de recursos sequenciais baseado nos mínimos quadrados) ou então, gerar modelos não lineares mais complexos (ex.: regressão gaussiana). O algoritmo é capaz de produzir estes resultados usando técnicas de design sequencial para preencher habilmente o espaço amostral com pontos “interessantes”, gerando um conjunto de dados que é utilizado para selecionar o modelo de regressão mais simples possível. Esse modelo mais simples é gerado de forma iterativa a partir de um conjunto predefinido de modelos de regressão candidatos. O objetivo é minimizar o número de chamadas para o processo gerador (simulador), resultando no menor número de amostras. Cada conjunto de dados produzidos iterativamente é usado de forma exaustiva e eficaz, capaz de convergir até mesmo respostas difíceis que requerem um grande número de amostras. A aplicação do algoritmo proposto em casos importantes (equações matemáticas de difícil resolução, coluna de destilação em Aspen Plus e uma Planta de tratamento de efluentes em Simulink) mostra sua efetividade na construção de metamodelos com capacidade preditiva significante. É sugerida a utilização de técnicas de regressão puramente não lineares em situações que as simulações demandem mais tempo do que o processamento do algoritmo. Em geral, um mix de métodos de regressão linear e não linear para a construção dos metamodelos é recomendada para a maioria dos casos, para compensar o tempo de processamento e a capacidade preditiva. |