Capacidade erro-zero de canais quânticos.

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: MEDEIROS, Rex Antonio da Costa.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
UFCG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
In this thesis, we generalise Shannon’s zero-error capacity of discrete memoryless channels to quantum channels. We propose a new kind of capacity for transmitting classical information through a quantum channel. The quantum zero-error capacity (QZEC) is defined as being the maximum amount of classical information per channel use that can be sent over a noisy quantum channel, with the restriction that the probability of error must be equal to zero. The communication protocol restricts codewords to tensor products of input quantum states, whereas collective measurements can be performed between several channel outputs. Hence, our communication protocol is similar to the Holevo-Schumacher-Westmoreland protocol. We reformulate the problem of finding the QZEC in terms of graph theory. This equivalent definition allows us to demonstrate some properties of ensembles of quantum states and measurements attaining the QZEC. We show that the capacity of ad-dimensional quantum channel can always be achieved by using an ensemble of at mostd pure quantum states, and collective von Neumann measurements are necessary and sufficient to attain the channel capacity. We discuss whether the QZEC is a non-trivial generalisation of the classical zero-error capacity. By non-trivial we mean that there exist quantum channels requiring two or more channel uses in order to reach the capacity, and the capacity can only be attained by using ensembles of non-orthogonal quantum states at the channel input. We also calculate the QZEC of some quantum channels. We show that finding the QZEC of classical-quantum channels is a purely classical problem. In particular, we exhibit a quantum channel for which we claim the QZEC can only be reached by a set of non-orthogonal states. If the conjecture holds, it is possible to give an exact solution for the capacity, and construct an error-free quantum block code reaching the capacity. Finally, we demonstrate that the QZEC is upper bounded by the Holevo-Schumacher-Westmoreland capacity.
Link de acesso: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1320
Resumo: Nesta tese, a capacidade erro-zero de canais discretos sem memória é generalizada para canais quânticos. Uma nova capacidade para a transmissão de informação clássica através de canais quânticos é proposta. A capacidade erro-zero de canais quânticos (CEZQ) é definida como sendo a máxima quantidade de informação por uso do canal que pode ser enviada através de um canal quântico ruidoso, considerando uma probabilidade de erro igual a zero. O protocolo de comunicação restringe palavras-código a produtos tensoriais de estados quânticos de entrada, enquanto que medições coletivas entre várias saídas do canal são permitidas. Portanto, o protocolo empregado é similar ao protocolo de Holevo-Schumacher-Westmoreland. O problema de encontrar a CEZQ é reformulado usando elementos da teoria de grafos. Esta definição equivalente é usada para demonstrar propriedades de famílias de estados quânticos e medições que atingem a CEZQ. É mostrado que a capacidade de um canal quântico num espaço de Hilbert de dimensão d pode sempre ser alcançada usando famílias compostas de, no máximo,d estados puros. Com relação às medições, demonstra-se que medições coletivas de von Neumann são necessárias e suficientes para alcançar a capacidade. É discutido se a CEZQ é uma generalização não trivial da capacidade erro-zero clássica. O termo não trivial refere-se a existência de canais quânticos para os quais a CEZQ só pode ser alcançada através de famílias de estados quânticos não-ortogonais e usando códigos de comprimento maior ou igual a dois. É investigada a CEZQ de alguns canais quânticos. É mostrado que o problema de calcular a CEZQ de canais clássicos-quânticos é puramente clássico. Em particular, é exibido um canal quântico para o qual conjectura-se que a CEZQ só pode ser alcançada usando uma família de estados quânticos não-ortogonais. Se a conjectura é verdadeira, é possível calcular o valor exato da capacidade e construir um código de bloco quântico que alcança a capacidade. Finalmente, é demonstrado que a CEZQ é limitada superiormente pela capacidade de Holevo-Schumacher-Westmoreland.