Ontology-driven urban issues identification from social media.
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO UFCG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/884 |
Resumo: | As cidades em todo o mundo enfrentam muitos problemas diretamente relacionados ao espaço urbano, especialmente nos aspectos de infraestrutura. A maioria desses problemas urbanos geralmente afeta a vida de residentes e visitantes. Por exemplo, as pessoas podem relatar um carro estacionado em uma calçada que está forçando os pedestres a andar na via, ou um enorme buraco que está causando congestionamento. Além de estarem relacionados com o espaço urbano, os problemas urbanos geralmente demandam ações das autoridades municipais. Existem diversas Redes Sociais Baseadas em Localização (LBSN, em inglês) no domínio das cidades inteligentes em todo o mundo, onde as pessoas relatam problemas urbanos de forma estruturada e as autoridades locais tomam conhecimento para então solucioná-los. Com o advento das redes sociais como Facebook e Twitter, as pessoas tendem a reclamar de forma não estruturada, esparsa e imprevisível, sendo difícil identificar problemas urbanos eventualmente relatados. Dados de mídia social, especialmente mensagens do Twitter, fotos e check-ins, tem desempenhado um papel importante nas cidades inteligentes. Um problema chave é o desafio de identificar conversas específicas e relevantes ao processar dados crowdsourcing ruidosos. Neste contexto, esta pesquisa investiga métodos computacionais a fim de fornecer uma identificação automatizada de problemas urbanos compartilhados em mídias sociais. A maioria dos trabalhos relacionados depende de classificadores baseados em técnicas de aprendizado de máquina, como SVM, Naïve Bayes e Árvores de Decisão; e enfrentam problemas relacionados à representação do conhecimento semântico, legibilidade humana e capacidade de inferência. Com o objetivo de superar essa lacuna semântica, esta pesquisa investiga a Extração de Informação baseada em ontologias, a partir da perspectiva de problemas urbanos, uma vez que tais problemas podem ser semanticamente interligados em plataformas LBSN. Dessa forma, este trabalho propõe uma ontologia no domínio de Problemas Urbanos (UIDO) para viabilizar a identificação e classificação dos problemas urbanos em uma abordagem automatizada que foca principalmente nas facetas temática e geográfica. Uma avaliação experimental demonstra que o desempenho da abordagem proposta é competitivo com os algoritmos de aprendizado de máquina mais utilizados, quando aplicados a este domínio em particular. |