Aprendizagem e recuperação de imagens utilizando mapas auto-organizáveis e representação log-polar.
Ano de defesa: | 2004 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO UFCG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/12218 |
Resumo: | A cada dia, um número crescente de organizações vem coletando e armazenando uma grande quantidade de imagens digitais. Além disso, imagens também vêm sendo massivamente adicionadas à World Wide Web. Portanto, a estruturação dessas informações, de forma a permitir uma recuperação eficiente, é de fundamental importância. Nos primeiros sistemas de recuperação de imagens, a indexação era feita a partir de palavras-chave. No entanto, com o rápido crescimento das coleções de imagens digitais, dois problemas com esse tipo de abordagem foram evidenciados: (i) a vasta quantidade de trabalho requerido na anotação manual das imagens e (ii) a subjetividade humana de percepção. Dessa forma, a partir da década de 1990, surgiu o conceito de Recuperação de Imagens Baseada em Conteúdo (RIBC), que se caracteriza pela indexação automática de imagens a partir de suas próprias características visuais, como cor, textura e forma. Muitos métodos de indexação baseados em B-Trees vêm sendo utilizados em RIBC, com o objetivo de reduzir o espaço de busca. No entanto, tais métodos são geralmente ineficientes ao lidar com altas dimensões. Além disso, as técnicas utilizadas para extrair características visuais podem causar a perda de informações valiosas da imagem. Nesta dissertação, investigamos o uso de Redes Neurais (mais especificamente os Mapas Auto-Organizáveis) para classificar, indexar e recuperar imagens nesse tipo de problema. A representação de imagem utilizada (log-polar) facilita o reconhecimento de imagens de forma independente de orientação e escala, além de permitir uma compactação da imagem original. Os resultados experimentais obtidos (no reconhecimento de objetos e imagens genéricas) mostraram que a combinação de Mapas Auto-Organizáveis com a representação log-polar é uma estratégia promissora para classificação de imagens. Assim, um protótipo de um sistema de RIBC foi implementado com a estratégia proposta e aplicado a dois estudos de caso em recuperação de imagens da Web. |