An investigation of neural architecture search in the context of deep multi-task learning.
Ano de defesa: | 2024 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO UFCG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/36528 |
Resumo: | O aprendizado multitarefa (MTL) é um paradigma de design para redes neurais que visa melhorar a generalização enquanto resolve múltiplas tarefas simultaneamente em uma única rede. A MTL tem tido sucesso em vários campos, como Processamento de Linguagem Natural, Reconhecimento de Fala, Visão Computacional e Descoberta de Medicamentos. Neural Architecture Search (NAS) é um subcampo do Deep Learning que propõe métodos para projetar redes neurais automaticamente, pesquisando e organizando camadas e blocos para maximizar uma função objetivo. Atualmente, existem poucos métodos na literatura que exploram o uso de NAS para construção de redes MTL. Neste contexto, este trabalho investiga uma sequência de experimentos comparativos entre redes multitarefa, redes monotarefa e redes criadas com uma estratégia de busca de arquitetura neural. Esses experimentos visam compreender melhor as diferenças entre esses paradigmas de projeto de redes neurais e comparar os resultados alcançados por cada um. Investigamos arquiteturas de redes neurais para diferentes casos de uso, como o conjunto de dados ICAO-FVC, conjuntos de dados MNIST, FASHION-MNIST, Celeb-A e CIFAR-10. Além disso, testamos um conjunto de dados bem estabelecido de NAS para avaliar novos métodos propostos em campo. Nossos experimentos revelaram que a técnica NAS, desenvolvida através do Reinforcement Learning, é capaz de descobrir arquiteturas ótimas em um tempo menor do que a atual técnica de última geração baseada na Evolução Regularizada. Além disso, esta técnica demonstrou resultados competitivos em vários conjuntos de dados de aprendizagem multitarefa, em termos de acurácia e equal error rate. Embora possa não ter o melhor desempenho no caso do ICAO-FVC, ainda oferece um resultado competitivo e tem o potencial de descobrir arquiteturas ainda melhores do que a melhor feita à mão. |