Uma técnica de priorização de casos de teste para múltiplas mudanças agregadas.

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: CAVALCANTE, Berg Élisson Sampaio.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
UFCG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/745
Resumo: É evidente hoje o grande investimento em qualidade de software. Assim, para submeter um produto com qualidade aceitável, é necessário determinar a sua testabilidade, uma propriedade que indica a facilidade e precisão na avaliação dos resultados de um teste. Teste de Regressão é um processo custoso, que demanda esforço considerável para detectar defeitos introduzidos em um código testado anteriormente. A fim de aumentar a custo-efetividade deste processo, são aplicadas técnicas de priorização de casos de teste (CTs), que tem por objetivo reordenar o conjunto de testes seguindo algum critério de ordenação. Em particular, a técnica Changed Blocks realiza priorização baseada em mudanças. Segundo estudos realizados neste trabalho, essa técnica apresenta algumas limitações, como: i. os resultados não obtém cobertura máxima de defeitos no topo da lista ordenada; ii. CTs com mesmo número de mudanças cobertas são ordenados aleatoriamente, sem seguir uma regra de importância específica; iii. CTs que revelam mudanças inéditas, mas que apresentam baixa cobertura de mudanças são desfavorecidos. Este trabalho propõe a implementação de duas técnicas baseadas na Changed Blocks, para que mudanças múltiplas agregadas em uma mesma versão do sistema em teste sejam melhor consideradas, não resultando em perdas aos benefícios oferecidos pela técnica original. Várias métricas foram utilizadas na análise, são elas: APFD; F-measure; F-spreading; Group-measure; Group-spreading; e Tempo de Execução. Através de análise experimental, avaliou-se a eficácia das técnicas propostas utilizando uma variedade de versões mutantes de quatro projetos open sources. Os resultados indicam que não houve perda estatística significante na aplicação da melhoria e, na antecipação de CTs em cenários de múltiplas mudanças, em média, foi superior.