Poda de redes neurais utilizando o efeito causal entre neuronios.

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: INTERAMINENSE, Carlos Daniel Oliveira.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
UFCG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/31568
Resumo: O uso de Redes Neurais Profundas (RNP) para resolver problemas de aprendizagem de máquina se tornou comum a partir de 2012, ano em que o modelo AlexNet venceu o desafio da ImageNet, que exigia a classificação de imagens que exigia a classificação de imagens em um conjunto de mil categorias possíveis. Apos essa data, outras RNP mais complexas surgiram, chegando a ter bilhões de parâmetros. Assim, aplicar técnicas de poda se tornou uma forma de reduzir a complexidade de uma RNP, pois essas técnicas têm como objetivo remover parâmetros do modelo de entrada, resultando em um modelo menos complexo e com uma acurácia tão boa quanto a obtida pelo modelo de entrada. Nesse contexto, a presente pesquisa propõe uma técnica de poda estruturada que considera o efeito causal entre os neurônios, para decidir quais serão podados, juntamente com todas as suas conexões. Os resultados obtidos nesta pesquisa mostraram que a técnica proposta resulta em modelos com acurácias superiores a outras técnicas de poda investigadas nesta dissertação de podas investigadas e com tempo e ocupação de espaço em disco melhores que o modelo de entrada.