Poda de redes neurais utilizando o efeito causal entre neuronios.
Ano de defesa: | 2023 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO UFCG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/31568 |
Resumo: | O uso de Redes Neurais Profundas (RNP) para resolver problemas de aprendizagem de máquina se tornou comum a partir de 2012, ano em que o modelo AlexNet venceu o desafio da ImageNet, que exigia a classificação de imagens que exigia a classificação de imagens em um conjunto de mil categorias possíveis. Apos essa data, outras RNP mais complexas surgiram, chegando a ter bilhões de parâmetros. Assim, aplicar técnicas de poda se tornou uma forma de reduzir a complexidade de uma RNP, pois essas técnicas têm como objetivo remover parâmetros do modelo de entrada, resultando em um modelo menos complexo e com uma acurácia tão boa quanto a obtida pelo modelo de entrada. Nesse contexto, a presente pesquisa propõe uma técnica de poda estruturada que considera o efeito causal entre os neurônios, para decidir quais serão podados, juntamente com todas as suas conexões. Os resultados obtidos nesta pesquisa mostraram que a técnica proposta resulta em modelos com acurácias superiores a outras técnicas de poda investigadas nesta dissertação de podas investigadas e com tempo e ocupação de espaço em disco melhores que o modelo de entrada. |