Abordagem para categorização de anomalias em Redes de Sensores sem Fio baseado em Lógica Fuzzy.
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO UFCG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/22608 |
Resumo: | Os avanços na microeletrônica permitiram a ascensão das Redes Sensores sem fio (RSSFs), que estão cada vez mais presentes em nosso dia-a-dia como um elemento fundamental para o paradigma da Internet das Coisas. Neste ambiente, a confiabilidade dos dados que transitam nessa rede é um fator relevante que gera investigações e pesquisas no ambiente acadêmico. Devido às diversas limitações existentes na arquitetura das RSSFs, falhas de sensores são comuns gerando dados incongruentes e anormais. Porém, anormalidades também refletem alterações do fenômeno que está sendo monitorado pelos sensores, gerando assim problemas na definição do que realmente está acontecendo em um determinado sensor. Assim, anomalias são indicativos de que algo fora do padrão ocorre na rede, e saber a causa dessas anormalidades é de essencial importância para tomadas de decisões no ambiente. Tendo em vista este contexto, o presente trabalho desenvolve uma abordagem de detecção e categorização de anomalias em redes de sensores sem fio baseado em lógica fuzzy, que tem por objetivo auxiliar na determinação da existência de eventos ou de sensores falhos. Sendo avaliados contextos de diferentes tipos de falhas nos dados e qual sua relação com fatores ligados a quantidade de sensores falhos numa região e perda de pacotes. Os resultados apontaram para a efetividade na identificação das anormalidades e categorização de anomalias, possuindo maior eficácia na categorização de falhas intermitentes, em relação a anomalias graduais e eventos. Também se constatou maior efetividade para ambientes com menos sensores falhos e se percebeu uma relação moderada em relação a abordagem e a perda de pacotes do ambiente. |