Abordagem para categorização de anomalias em Redes de Sensores sem Fio baseado em Lógica Fuzzy.

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: SANTOS, Miqueas Galdino dos.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
UFCG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/22608
Resumo: Os avanços na microeletrônica permitiram a ascensão das Redes Sensores sem fio (RSSFs), que estão cada vez mais presentes em nosso dia-a-dia como um elemento fundamental para o paradigma da Internet das Coisas. Neste ambiente, a confiabilidade dos dados que transitam nessa rede é um fator relevante que gera investigações e pesquisas no ambiente acadêmico. Devido às diversas limitações existentes na arquitetura das RSSFs, falhas de sensores são comuns gerando dados incongruentes e anormais. Porém, anormalidades também refletem alterações do fenômeno que está sendo monitorado pelos sensores, gerando assim problemas na definição do que realmente está acontecendo em um determinado sensor. Assim, anomalias são indicativos de que algo fora do padrão ocorre na rede, e saber a causa dessas anormalidades é de essencial importância para tomadas de decisões no ambiente. Tendo em vista este contexto, o presente trabalho desenvolve uma abordagem de detecção e categorização de anomalias em redes de sensores sem fio baseado em lógica fuzzy, que tem por objetivo auxiliar na determinação da existência de eventos ou de sensores falhos. Sendo avaliados contextos de diferentes tipos de falhas nos dados e qual sua relação com fatores ligados a quantidade de sensores falhos numa região e perda de pacotes. Os resultados apontaram para a efetividade na identificação das anormalidades e categorização de anomalias, possuindo maior eficácia na categorização de falhas intermitentes, em relação a anomalias graduais e eventos. Também se constatou maior efetividade para ambientes com menos sensores falhos e se percebeu uma relação moderada em relação a abordagem e a perda de pacotes do ambiente.