Desenvolvimento de modelos em redes neurais artificiais para a simulação da concentração do oxigênio dissolvido e da autodepuração do Rio Alegria - PR.

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: SCHÜTZ, Fabiana Costa de Araujo.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Campina Grande
Brasil
Centro de Tecnologia e Recursos Naturais - CTRN
PÓS-GRADUAÇÃO EM ENGENHARIA AGRÍCOLA
UFCG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/28030
Resumo: O presente estudo consistiu no desenvolvimento de dois modelos em Redes Neurais Artificiais (RNA) com o objetivo de estimar o oxigênio dissolvido e modelar a autodepuração do Rio Alegria, localizado no município de Medianeira no Estado do Paraná. Os dois modelos foram desenvolvidos com base em dados da qualidade da água do rio e o modelo responsável pela predição da autodepuração do rio também utilizou dados do efluente que é incorporado ao rio ao longo do intervalo estudado. Para treinamento e validação dos modelos foram gerados 132 grupos de dados: sendo 22 coletas em 6 estações. Para simular a concentração de oxigênio dissolvido na água do rio foram desenvolvidas cinco redes neurais artificiais diferentes. As variáveis de entrada nestas redes foram os parâmetros de qualidade da água exceto o Oxigênio Dissolvido (OD), que configurou em todos as redes como saída. Para predizer a autodepuração do rio foi desenvolvido um modelo em redes neurais artificiaisbaseado em dados da qualidade da água em um ponto a montante do lançamento do efluente, e dados deste efluente, a partir destes dados, o modelo fornece valores de oxigênio dissolvido (OD) e demanda bioquímica de oxigênio(DBO) em pontos a jusante, ou seja, prediz o potencial autodepurador do rio. Dentre os modelosdesenvolvidos para simular a concentração de oxigênio dissolvido o melhor resultado atingido foi um erro médio entre os valores de OD estimados pela rede neural artificial de 11,4%. No modelo testado para predizer a autodepuração do rio, foram testadas várias arquiteturas e a que apresentou melhor resultado foi a configuração com uma camada oculta de 14 neurônios 14:14:1 e 2000 épocas. O melhor resultado de erro médio entre os valores de DBO conhecidos e os valores ajustados foi de 2,17% e para a DBO gerou um erro médio entre os valores de conhecidos e os valores ajustados de 11,26%.