Classificação do estado de sonolência para motoristas com base em eletroencefalograma, redes neurais artificiais e algoritmos genéticos.
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UFCG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/26979 |
Resumo: | O cérebro humano está, na maior parte do tempo, processando informações para reagir de acordo com os estímulos recebidos pelo conjunto sensorial do corpo humano. A fadiga men- tal é um estado de sonolência e baixa atenção que aumenta o tempo de reação do indivíduo. No trânsito, o baixo tempo de reação é crucial para evitar acidentes, o que torna a fadiga mental um fator de risco para os motoristas, principalmente ao trafegar em rodovias, as quais normalmente permitem velocidades mais altas. Neste trabalho, é descrito um método de classificação de sinais de eletroencefalograma (EEG) em sonolência, utilizando redes neu- rais artificiais otimizadas utilizando algoritmos genéticos. Os parâmetros de entrada foram calculados para grupos de 256 amostras (janelas de 1 segundo) do canal AF7 de um headset de EEG portátil denominado Muse. A aplicação do método proposto resultou em 13,42% de erro na classificação das amostras (confusão), 14,49% de erro quadrático médio, 85,21% de sensitividade e 87,95% de especificidade, a partir da utilização de dados adquiridos durante sessões em um simulador de direção. |