Classificação do estado de sonolência para motoristas com base em eletroencefalograma, redes neurais artificiais e algoritmos genéticos.

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: XAVIER, Felipe Porge.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
UFCG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/26979
Resumo: O cérebro humano está, na maior parte do tempo, processando informações para reagir de acordo com os estímulos recebidos pelo conjunto sensorial do corpo humano. A fadiga men- tal é um estado de sonolência e baixa atenção que aumenta o tempo de reação do indivíduo. No trânsito, o baixo tempo de reação é crucial para evitar acidentes, o que torna a fadiga mental um fator de risco para os motoristas, principalmente ao trafegar em rodovias, as quais normalmente permitem velocidades mais altas. Neste trabalho, é descrito um método de classificação de sinais de eletroencefalograma (EEG) em sonolência, utilizando redes neu- rais artificiais otimizadas utilizando algoritmos genéticos. Os parâmetros de entrada foram calculados para grupos de 256 amostras (janelas de 1 segundo) do canal AF7 de um headset de EEG portátil denominado Muse. A aplicação do método proposto resultou em 13,42% de erro na classificação das amostras (confusão), 14,49% de erro quadrático médio, 85,21% de sensitividade e 87,95% de especificidade, a partir da utilização de dados adquiridos durante sessões em um simulador de direção.