Um modelo para redes neuroniais biologicamente inspirado baseado em minimização de divergência local.
Ano de defesa: | 2009 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UFCG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1444 |
Resumo: | Neste trabalho é proposto o desenvolvimento de uma rede neuronial com aprendizagem não supervisionada, para modelar a organização topográfica do córtex visual primário. Para isto, estuda-se o comportamento dos campos receptivos do córtex visual primário(V1), e, para o modelamento da rede utilizam-se os conceitos de divergência local e de interação entre neurônios vizinhos, bem como da característica de não linearidades dos neurônios. Para treinamento da rede desenvolveu-se um algoritmo de ponto fixo. |