Desenvolvimento de um gerador de sinais de uma cuba de redução de alumínio como fonte de dados para aprendizagem de uma rede neural artificial.
Ano de defesa: | 2009 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Ciências e Tecnologia - CCT PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA UFCG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/5368 |
Resumo: | A eletrólise do alumínio é um método eletroquímico que consiste em produzir metal, pela mediação de uma corrente elétrica e alumina dissolvida num banho de criolita a temperatura elevada. Atualmente, os modelos matemáticos que representam a dinâmica deste método sob a forma de balanços mássicos e energéticos são constituídos de equações diferenciais comuns acopladas, não-lineares e a coeficientes variáveis. Essa dissertação tem como objetivo desenvolver um gerador de sinais em uma cuba eletrolítica que servirá como fonte de dados para a aprendizagem de uma rede neural artificial, partindo de um modelo linear de ordem dez, com dezoito parâmetros, em função de dac e dma, que descreve o comportamento do processo de redução do alumínio. A modelagem e simulação computacional desse modelo permitiram a visualização e estudo de cada variável e parâmetro envolvido. Determinamos os parâmetros ótimos do modelo e efetuamos uma análise de sensibilidade dos parâmetros, o que nos indica a dependência entre eles e o impacto de cada parâmetro no modelo. Através de uma relação típica entre a resistência (R) e a concentração de alumina (C) foi possível desenvolver um modelo empírico e efetuando um ajuste nos parâmetros, verificamos que o modelo é adequado para representar R e C. O software desenvolvido poderá ser usado como alimentação de uma rede neural artificial que vai retornar os parâmetros para cada situação de operação, nos permitindo determinar novos valores de concentração de alumina, temperatura do banho e massa da crosta sem se fazer necessário a medição. |