Some classical inequalities, summability of multilinear operators and strange functions.
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Ciências e Tecnologia - CCT PÓS-GRADUAÇÃO EM MATEMÁTICA UFCG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/28219 |
Resumo: | Este trabalho está dividido em três partes. Na primeira parte, investigamos o comportamento das constantes das desigualdades polinomial e multilinear de Bohnenblust–Hille e Hardy–Littlewood. Na segunda parte, mostramos um resultado ´otimo de espa¸cabilidade para o complementar de uma classe de operadores múltiplo somantes em lp e também generalizamos um resultado relacionado a cotipo (de 2010) devido a G. Botelho, C. Michels e D. Pellegrino. Além disso, provamos novos resultados de coincidência para as classes de operadores multilineares absolutamente e múltiplo somantes (em particular, mostramos que o famoso teorema de Defant–Voigt é ótimo). Ainda na segunda parte, mostramos uma generalização das desigualdades multilineares de Bohnenblust–Hille e Hardy–Littlewood e apresentamos uma nova classe de operadores multilineares somantes, a qual recupera as classes dos operadores multilineares absolutamente e múltiplo somantes. Na terceira parte, provamos a existência de grandes estruturas algébricas dentro de certos conjuntos, como, por exemplo, a família das funções mensuráveis a Lebesgue que são sobrejetivas em um sentido forte, a família das funções reais não constantes e diferenciáveis que se anulam em um conjunto denso e a família das funções reais não contínuas e separadamente contínuas |