Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Pimenta, Paulo Vicente de Cassia Lima |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/11070
|
Resumo: |
The continuous casting technique in the last four decades has been large used for to production of semi-finished steel. The heat transfer is major mechanism and it occurs in various steps during the continuous casting. The quality of steel is directly related to the way the heat transfer occur because the thermal variations produce mechanical loads as well as contact forces which are generated through the rollers and shake of the mold. Such factors may cause defects such as fractures or cracks in the final product if the resulting stresses and strains exceed critical values. The technique must be improved in order to reduce the appearance of defects and the production time. For this a good understanding of physical phenomena involved during the solidification process is critical. The focus of this work is to apply the EbFVM (Element based Finite-Volume Method) approach to study the effects of linear tensions unidirectionally coupled with the temperature applied to continuous casting of the steel 1013D (0,3% of carbon) In the simulations we adopted some simplifications such as the Plane Strain and isotropic material. We also neglected the body forces contact with the rollers the liquid pressure on the walls of the steel ingot (ferrostatic pressure) and the convective effect. However despite of the simplifications adopted this work provides quantitative informations on the linear tensions accumulation that point out to areas of possible of cracks formations |