Detalhes bibliográficos
Ano de defesa: |
2005 |
Autor(a) principal: |
Alencar, Ana Ellen Valentim de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/1020
|
Resumo: |
The Petroleum Asphaltic Cement characterized as CAP 50/60, produced at the state of Espírito Santo (Fazenda Alegre), was modified by addition of copolymers of ethylene vinyl acetate (EVA) and EVA from the footwear’s industry residue (EVAR). The original and modified CAPS were characterized by infrared spectroscopy (FTIR) and nuclear magnetic resonance (RMN). Thermal analysis,as thermogravimetry (TG) and differential scanning calorimetry (DSC), was used to evaluate the thermal stability of the samples. The characterization was also performed with empirical tests such as penetration, softening point, elastic recovery and viscosity. The main results indicated that polymer modified CAPS presented larger thermal stability in oxidative atmosphere than in inert atmosphere. The analysis of DSC curves revealed that modified CAPS, when submitted to lower temperatures, were more resistant to the thermal cracks than conventional CAP. Also modified CAPS showed to be more resistant to the thermal oxidative decomposition, when submitted to a simulated aging process. The viscosity of the polymer modified binder was increased in relation to the original binder. Polymer modified CAP EVAR presented non-Newtonian behavior, whereas Newtonian behavior was observed for unmodified CAP. It was observed that modifying the asphalt binder with a copolymer EVAR leads to an improvement in the physical properties in relation to the penetration, softening point, thermal susceptibility and elastic recovery |