Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Silva Júnior, Moacir José da |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/15674
|
Resumo: |
In order to promote the dehydration/dehydrogenation of reaction of glycerol in a heterogeneous environment, different catalysts were synthesized comprising copper oxide dispersed on different supports: aluminum oxide, aluminum oxide containing iron oxide, aluminum oxide containing niobium oxide and, silicon oxide containing iron oxide. The synthesis route applied was the polymeric precursor method. Acetol was the main reaction production, but other products were observed in low content, such as methanol, ethanol, acrolein, acetone, amyl alcohol, 1-propanol , 1,2- propanediol and 1,3-propanediol. High selectivity for acrolein was observed using the catalyst comprising of copper, iron and aluminum oxides. The effect of calcination temperature on catalyst performance was observed with the catalyst comprising of copper, iron and silicon oxides, and the best results were obtained by calcination at 600 °C. The analysis by X-ray diffraction highlight the preferential formation of CuO phase, iron oxide and aluminum oxide phases were observed even after calcination at 600 °C. The analysis of temperature programmed reduction (TPR) indicate the formation of samples with significant interaction between the oxides, suggesting high dispersion of iron oxide. The reuse test (twice) showed stability in conversion capacity and selectivity. The analyzes carried out by thermogravimetry and infrared spectroscopy, performed after the catalytic test, point to the formation/retention alkoxides on the catalyst surface. |