Detalhes bibliográficos
Ano de defesa: |
2007 |
Autor(a) principal: |
Cruz, Magnus Alencar da |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/16143
|
Resumo: |
The main goal of this master thesis was to carry out a comparative study of the performance of algorithms of unsupervised competitive neural networks in problems of vector quantization (VQ) tasks and related applications, such as cluster analysis and image compression. This study is mainly motivated by the relative scarcity of systematic comparisons between neural and nonneural algorithms for VQ in specialized literature. A total of seven algorithms are evaluated, namely: K-means, WTA, FSCL, SOM, Neural-Gas, FuzzyCL and RPCL. Of particular interest is the problem of selecting an adequate number of neurons given a particular vector quantization problem. Since there is no widespread method that works satisfactorily for all applications, the remaining alternative is to evaluate the influence that each type of evaluation metric has on a specific algorithm. For example, the aforementioned vector quantization algorithms are widely used in clustering-related tasks. For this type of application, cluster validation is based on indexes that quantify the degrees of compactness and separability among clusters, such as the Dunn Index and the Davies- Bouldin (DB) Index. In image compression tasks, however, a given vector quantization algorithm is evaluated in terms of the quality of the reconstructed information, so that the most used evaluation metrics are the mean squared quantization error (MSQE) and the peak signal-to-noise ratio (PSNR). This work verifies empirically that, while the indices Dunn and DB or favors architectures with many prototypes (Dunn) or with few prototypes (DB), metrics MSE and PSNR always favor architectures with well bigger amounts. None of the evaluation metrics cited previously takes into account the number of parameters of the model. Thus, this thesis evaluates the feasibility of the use of the Akaike’s information criterion (AIC) and Rissanen’s minimum description length (MDL) criterion to select the optimal number of prototypes. This type of evaluation metric indeed reveals itself useful in the search of the number of prototypes that simultaneously satisfies conflicting criteria, i.e. those favoring more compact and cohesive clusters (Dunn and DB indices) versus those searching for very low reconstruction errors (MSE and PSNR). Thus, the number of prototypes suggested by AIC and MDL is generally an intermediate value, i.e nor so low as much suggested for the indexes Dunn and DB, nor so high as much suggested one for metric MSE and PSNR. Another important conclusion is that sophisticated models, such as the SOM and Neural- Gas networks, not necessarily have the best performances in clustering and VQ tasks. For example, the algorithms FSCL and FuzzyCL present better results in terms of the the of the reconstructed information, with the FSCL presenting better cost-benefit ratio due to its lower computational cost. As a final remark, it is worth emphasizing that if a given algorithm has its parameters suitably tuned and its performance fairly evaluated, the differences in performance compared to others prototype-based algorithms is minimum, with the coputational cost being used to break ties. |