Redes neurais convolucionais e energia de dobramento multiescala na descrição e análise de formas

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Lopes, José Gerardo Fonteles
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/47319
Resumo: The automatic recognition of pills through image can reduce wrong drug administration in elderly patients and also enable forensic intelligence to establish links among illegal drug marketing. Considering the remarkable progress and performance of the convolutional neural networks (CNNs) in pattern recognition problems, this study proposes the application of neural network, namely LeNet and Inception ResNet as well as the normalize normalize multiscale bending energy (NMBE) for feature extraction of licit and illicit pills in order to develop algorithms for automatic recognition of pills. We assess the generalization of the algorithms in an image database from the international alphabet of sign language (Hands). We conduct classification and content-based image retrieval (CBIR) experiments and evaluate the results quantitatively using the Accuracy and mean average precision (MAP) measures. We perform the qualitative analysis through the U matrix for visualization of the cluster arrangement. The results showed that LeNet outperformed the Inception Resnet and NMBE for image databases with a great amount of images for training as the Licit Pills and Hands databases.