Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Barros, Ana Luiza Bessa de Paula |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/8003
|
Resumo: |
This thesis addresses the problem of data classification when they are contaminated with atypical patterns. These patterns, generally called outliers, are omnipresent in real-world multi- variate data sets, but their a priori detection (i.e. before training the classifier) is a difficult task to perform. As a result, the most common approach is the reactive one, in which one suspects of the presence of outliers in the data only after a previously trained classifier has achieved a low performance. Several strategies can then be carried out to improve the performance of the classifier, such as to choose a more computationally powerful classifier and/or to remove the de- tected outliers from data, eliminating those patterns which are difficult to categorize properly. Whatever the strategy adopted, the presence of outliers will always require more attention and care during the design of a pattern classifier. Bearing these difficulties in mind, this thesis revi- sits concepts and techniques from the theory of robust regression, in particular those related to M-estimation, adapting them to the design of pattern classifiers which are able to automatically handle outliers. This adaptation leads to the proposal of robust versions of two pattern classi- fiers widely used in the literature, namely, least squares classifier (LSC) and extreme learning machine (ELM). Through a comprehensive set of computer experiments using synthetic and real-world data, it is shown that the proposed robust classifiers consistently outperform their original versions. |