Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Oliveira, Alessandra Honório |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/11174
|
Resumo: |
The aging of petroleum asphalt cement (AC) is a natural process caused mainly by volatilization of lighter fractions and oxidation reactions. It is known that, over the years, the asphalt mixtures age and become more rigid. This stiffening may contribute to fatigue cracks in asphalt pavements, and thus, can make them more resistant to permanent deformation. The cashew nut shell liquid (CNSL) is a "green additive", coming from a renewable and biodegradable source and has antioxidant characteristics. In Brazil, some studies highlight the CNSL antioxidant characteristics, however, few are the works that consider their application in paving. In this study, the CNSL is proposed as a modifier for the AC 50/70 for the purpose of assessing its antioxidant potential. The asphalt mixes and the conventional AC and the one modified with 2% of CNSL were analyzed before and after various aging processes performed in the laboratory and in a natural state. The asphalt mixtures were aged in different conditions, compacted and loose samples. After the aging processes and the recovery of the AC, they were evaluated in relation to their empirical and rheological properties and compared to those obtained for the unaged state. Furthermore, the effects of oxidative aging was analyzed by infrared spectroscopy - FTIR (fourier transform infrared) and changes in the SARA (Saturates, Aromatics, Resins and Asphaltenes) composition through chromatography. The asphalt mixtures containing conventional AC and the AC modified with 2% of CNSL, after the aforementioned aging processes were characterized mechanically using of resilience modulus (RM), tensile strength (TS), fatigue life, dynamic modulus |E*| and dynamic creep (DC) hots. The results for the tests performed indicate that the CNSL acts as an antioxidant for the short term period, but it does not show the same behavior for the long-term aged samples. After analyzing the results achieved for the asphalt mixtures, it can be said that the CNSL caused a slight reduction in stiffness of these mixtures and, possibly, polymerized when subjected to aging. The most aggressive aging process was the one that subjected the loose mixture samples to the long term aging during nine days. |