Detalhes bibliográficos
Ano de defesa: |
2010 |
Autor(a) principal: |
Araújo, Felipe Fernandes Viana de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/16698
|
Resumo: |
A hydraulic model was developed for simulation of water supply networks using the Method of Characteristics (MOC), introducing new features to the CALHIDREDMT model, proposed by Righetto (1994). The model uses the concept of pseudo-transient, using a fictitious value for the wave celerity. Simulations were performed in networks equipped with reservoirs, tanks, pump stations and boosters, considering both steady-state situations, as well as extended-periods (24 hours), including real cases and generic examples. The obtained results were compared to simulations performed in the model EPANET and to field experiments (pressure data measured with a manometer). Convergence issues and the performance of the solution technique were analyzed in the boundary elements for different network configurations. In addition, the hydraulic model was coupled into a Genetic Algorithms (GA) routine. The Genetic Algorithm routine presents an objective function that considers the minimization of the energetic costs associated with pump stations and it includes ways to penalize undesired issues in the operation, like high values of pressure and velocity, surplus of pump station maneuvers and violation of tank capacity limits. Analyses were performed considering variations in the taxation formulas, penalization criterions and GA parameters to evaluate the influence of these issues in the objective function and the routine processing time. The model presented a satisfactory performance and flexibility. It can be used as an analytical tool for applications involving water distribution networks in real time. |