Desenvolvimento de um sistema de apoio à decisão na seleção de motoniveladoras para a execução de obras de terraplenagem e de pavimentação

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Soares, Maria Edjane da Silva
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/13012
Resumo: The demands on speed and efficiency of infrastructure design and construction has increased due to the use of software and more productive equipment, which has required better performance of equipment planners at each step. However, even considering that the costs associated with equipment are one of the items with the greatest weight in road construction, there are few computerized systems for fleet selection decision support. Fleet selection systems have been developed by researchers in Brazil and worldwide, but most of them consider only trucks and excavators/loaders or scrapers. This research aims at developing a decision support system for the selection of motor graders for construction activities involving earthmoving and paving works named SADPATROL. Initially, an analysis of the motor grader technological evolution was performed in order to evaluate the influence of the improvements on productivity gains. The equations presented in the literature were studied for productivity calculation and, after verifying the suitability of the equation, the equation was incorporated in the SADPATROL system with the necessary changes in its variables. Through the analysis of the variables in the equation, it was possible to identify how they influenced the productivity. Through this analysis, improvements were implemented. These improvements consisted of the inclusion of standard values for the system variables, allowing the achievement of more accurate results if the user has no data for productivity measured in the field. The SADPATROL system has 46 types of motor graders included in its database, from many different models and sizes and from 12 different manufacturers. The user is able to plan the fleet with its own equipment and verify if it satisfies the construction project deadline. If the deadline cannot be satisfied using the available fleet or the user has no equipment, the system performs the construction planning using all database equipment and provides the optimal solution with 46 options organized into fleets in increasing order according to the amount of equipment needed. It is also possible for the user to select the equipment using time cost information and, thus, achieve the lowest cost fleet. The significant amount of information necessary for motor graders selection and its inter-relationships and dependencies were organized in a systematic way in the SADPATROL system, reducing, the empiricism and the dependence on human expertise in selecting fleets. This research may also help in assisting in the development of technical standards and expanding the dissemination of knowledge about such equipment