Identificação Robusta de Sistemas Dinâmicos Usando Redes de Ecos de Estado

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Bessa, Renan
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/55297
Resumo: The use of recurrent neural networks in online system identification is very limited in real- world applications, mainly due to the propagation of errors caused by the iterative nature of the prediction task over multiple steps ahead. Bearing this in mind, in this paper, we revisit design issues regarding the robustness of the echo state network (ESN) model in such online learning scenarios using a recursive estimation algorithm and an outlier robust-variant of it. By means of a comprehensive set of experiments, we show that the performance of the ESN is dependent on the adequate choice of the feedback pathways and that the prediction instability is amplified by the norm of the output weight vector, an often neglected issue in related studies.