Sobre hipersuperfícies com curvatura e bordo prescritos em variedades riemannianas

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Cruz, Flávio França
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/4088
Resumo: We investigate the existence of hypersurfaces with prescribed curvature in a wide context. First we study the Dirichlet problem for a class of fully nonlinear elliptic equations of curvature type on a Riemannian manifold, which are closely related with the existence of hypersurfaces with prescribed curvature and boundary. In this setting we prove some existence results which extend to a Riemannian manifold previous results by Caffarelli, Nirenberg,Spruck and Bo Guan for the Euclidean space. We also study the existence of hypersurfaces with prescribed anisotropic mean curvature. We prove existence results for the Dirichlet problem related to the anisotropic mean curvature equation. This ensures the existence of Killing graphs with prescribed anisotropic mean curvature and boundary in a Riemannian manifold endowed with a nonsingular Killing vector field. Finally, we prove the existence of hyperspheres with prescribed anisotropic mean curvature in the Euclidean space, extending a previous result of Treibergs and Wei.