A rough sets-based rule induction for numerical datasets

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Albuquerque, Rafael da Silva
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/47910
Resumo: Drawing reasonable conclusions from real-world data has been a challenge owing to diverse factors related to the quality of information. In order to handle these problems, the rough sets theory, which deals with inconsistency through the approximation of data sets, was proposed. Among the applications of rough sets, their use in learning processes is highlighted due to their capacity to produce interpretable classification models. Despite their success, some of the most commonly used rough sets based methods are designed to work with categorical input data. This design choice can severely limit their application to real-world problems. Such methods are also inappropriate to handle binary classification problems. By using discretization methods and decision trees we were able to overcome such limitations and improve the classification quality of the methods used. As a result, we developed three approaches. The first presented approach produce interpretable results considering the rejection option. The second approach makes use of belief merging techniques to reduce the number of rejected objects in the first approach. At last, the third approach makes use of decision trees to classify all rejected cases.