Atividade antinociceptiva da riparina IV : participação dos receptores TRPV1, TRPM8, receptores glutamatérgicos e do óxido nítrico

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Dias, Marília Leite
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/4124
Resumo: Riparin IV, an alkamide synthesized from Aniba riparia, was tested in standard animal models of pain, as well as the possible mechanisms of action involved. It was used Swiss mice (20-30g), and Riparin IV was administred acutely in all tests, at the doses of 25 and 50 mg/kg, by gavage. It was used the tests of abdominal writhing induced by acetic acid, hot plate test, formalin test, mechanical hypernociception induced by carrageenan, nociception test induced by capsaicin, cinnamaldehyde and menthol, nociception test induced by glutamate, as well as models of behavior that ruled out the possibility of a muscle relaxing activity or induce false-positive results in previous models, such as the open field test and the rota Rod test. The results showed that Riparin IV has an antinociceptive activity at the model of visceral nociception induced by acetic acid. Riparin IV did not show any activity at the hot plate thermal nociception model. Pretreatment with Riparin IV reduced significantly the inflammatory nociception induced at the second phase of formalin test, but did not alter the neurogenic nociception induced at the first phase of formalin test. The animals pretreated with Riparin IV also exhibited a significant reduction at the mechanical hypernociception induced by carrageenan. Related to the participation of the Transient Potential Receptors (TRP), Riparin IV showed an activity at the models of nociception induced by capsaicin and menthol, but did not show any activity at the nociception induced by cinnamaldehyde. Also reduced the nociception induced by administration of glutamate at the rind paw. To study the mechanisms of action of Riparin IV, it was used only the dose of 50 mg/kg of the substance. At the evaluation of participation of the ATP-dependent potassium channels, pretreatment with glibenclamide was not able to reverse the antinociceptive action of Riparin IV, discharging its involvment; at the same way, pretreatment with yohimbine, an a2-adrenergic antagonist, and pCPA, a depletor of the serotonin reservations, were not able of reverse such action, not having any involvement with the mechanism of action of Riparin IV. Pretreatment with L-arginine, a precursor of Nitric Oxide, reversed the antinociceptive action of Riparin IV, suggesting, in part, the participation of nitric oxide pathway at the mechanism of action. The results showed that this substance did not alter the locomotor activity at the open field test, neither diminished the number of falls at the rota Rod test, discharging the possibility of sedation or incoordination by Riparin IV. In summary, the results showed that Riparin IV has an action in animal models of nociception, possibly involving the receptors TRPV1, TRPM8, glutamatergic receptors and the nitric oxide pathway.