Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
Lara, Temerson Fernando Oliveira |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://repositorio.ufc.br/handle/riufc/79501
|
Resumo: |
In recent years, there has been a growing interest in researching new materials that can be produced in single layers or few layers, especially those with unique optoelectronic properties, making them promising for future technological applications. Similar to multilayer graphene, the physical properties of multilayer two-dimensional (2D) materials can be tuned by stacking layers of the same or different 2D materials. In the multilayer context and based on the interconvertibility feature shared between monolayer Lieb and Kagome lattices, which allows mapping transition lattice stages between these two limits, we extend the recently proposed tight-binding model to the case of a multilayer Lieb-Kagome system, considering the two most common stackings: AA and AB (Bernal). We systematically study the band transformations between the two lattices by adjusting the interlayer hopping/distance, with or without assuming the influence of the nearest intralayer and interlayer neighbors, considering different numbers of stacked layers, and under the application of an external perpendicular electric field. The energetic changes are understood from the perspective of the layer dependence of the pseudospin components, the total probability density distributions, and the group theory perspective. The present model offers an appropriate and straightforward way to continuously investigate the evolution of the optoelectronic properties of the multilayer Lieb-Kagome system under any external effect. |