Aproveitamento do pedúnculo do caju para síntese de oligossacarídeos prebióticos

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Rabelo, Maria Cristiane
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/17778
Resumo: Leuconostoc mesenteroides B742 produces the enzyme dextransucrose in a medium containing sucrose (carbon source), a nitrogen source and mineral salts. This enzyme catalyses dextran synthesis when the only carbon source is sucrose. When acceptors (maltose, fructose, glucose or other simple sugar) are present as the main substrate and sucrose is the second one, the enzyme synthesizes prebiotic oligosaccharides. These carbohydrates are not digested by humans and reach the large intestine where they are metabolized by bifidobacteria and lactobacilli, the intestine endogenous microbiota, increasing their growth. The most published papers about oligosaccharides synthesis using dextransucrase from Leuconostoc mesenteroides are related to the strain B512F and the synthesis is carried out using synthetic substrates. The cashew tree, largely grown in Ceará state, has a peduncle (pseudofruit) which is wasted. Considering that the peduncle corresponds to 90 % of the fruit weight, its annual estimated production is about 1,5 millions tons. However, only 5% of this production is industrially used or consumed in natura, being large amounts wasted in the field. This work aimed to the study of the prebiotic oligosaccharide synthesis through the acceptor reaction with dextransucrase enzyme from Leuconostoc mesenteroides B742 in natura clarified cashew apple juice. The partial substitution of yeast extract by ammonium sulfate as nitrogen source was also investigated. According to the results obtained, the clarified cashew apple juice can be used as low cost alternative substrate to grow L.mesenteroides B742 and to produce prebiotic oligosaccharide through enzyme synthesis. The crude enzyme showed higher stability in the clarified cashew apple juice when compared to the synthetic medium, making this substrate interesting for industrial applications because enzyme purification protocols are one of the most expensive steps in enzyme process. The partial substitution of yeast extract by ammonium sulfate also showed technical viability without enzyme yield losses.