Equivalência assintótica forte e fraca de germes de funções semi-algébricas contínuas na origem e no infinito

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Sousa, Roger Oliveira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/68390
Resumo: In this work we present the notions ofweak and strong asymptotic equivalences at the origin and at infinity for germs os semi-algebraic and continuous functions in the real punctured plane. We show that such equivalences are completely determined and characterizad by an adapted finite combinatorial object, called minimal pizza associated with the corresponding germ of considered function.