Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Miranda, Lucas de Paula |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/30882
|
Resumo: |
The δ-kicked rotor is a dynamic system that can present chaotic behavior depending on the intensity of the perturbation (kicked) applied on it. Cassati and Chirikov study the dynamical properties of the classical kicked rotor model and shown that the chaotic behavior of the classic model leads to a chaotic dynamical diffusion of the momentum. It was formulated by Niels Bohr that the dynamics of a quantum system reproduce the dynamics of the equivalent classical system in the classical limit. Which means that if a classical system has a chaotic behavior the quantum correspondent is also chaotic. Cassati showed that the presence of classic chaos kicked rotor leads to a diffusion suppression of the wave function in the momentum space, on the quantum correspondent system. This diffusion suppression is known as dynamical localization, which is the analogous phenomenon of the Anderson localization for time periodic systems. Using the Floquet operator, we numerically studied kicked rotor under a random variation of the kick intensity (noise). Considering that, in nature, nothing is truly random, we study the effects of long-range correlated random sequence affects the dynamical localization on the noised kicked rotor |