Efeito da diluição sobre a microestrutura e resistência à corrosão de revestimentos da liga AWS ER NiCrMo-14 depositados pelo processo TIG com alimentação de arame frio

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Miná, Émerson Mendonça
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/13785
Resumo: The overlay welding is a way for manufacture of materials that need specific properties on the surface. Typically, a low level of dilution is required to minimize the chemical changes that modify the overlay properties. The standard ISO 10423 establishes means for assessing the quality for the alloy AWS ER NiCrMo-3, that set a suitable overlay to severe conditions of corrosion those clads that have until 5% wt of iron content in the fusion zone, while for applications of moderate corrosion the criteria is required iron content until 10% wt. However, it is not known what quality criteria should be applied for coatings using noble alloys such as alloy AWS ER NiCrMo-14. The aim of this study was evaluate the effect of dilution on the microstructure, microsegregation and corrosion resistance of AWS ER NiCrMo-14 alloy overlay welded by GTAW cold wire feed process. Each clad was welded on ASTM A36 steel by GTAW process with the addition of a single cold wire layer of alloy AWS ER NiCrMo-14. The microstructure was characterized by scanning electron microscopy (SEM) and have not identified significant changes to the variation of dilution. It was observed on all overlays a γ-CFC matrix with dispersed precipitates in interdendritic regions. The microsegregation of the overlays was measured by energy dispersive of X-ray spectroscopy (EDS) chemical composition analysis, which showed that the Fe incorporation potential into the solid (k > 1) increased for increments in dilution. The Mo showed a high potential to segregate to liquid and your coefficient k increased with increments in dilution. The Cr and W showed a small drop in k partition coefficient with increases in the dilution. The precipitates were characterized by X-ray diffraction (XRD), EDS analysis using the transmission electron microscopy (TEM) and SEM and electron diffraction analysis. It were identified the phases σ, μ and P. The overlays were subjected to the corrosion test according to ASTM G48 C method to obtaining the critical pitting temperature (TCP) of each clad. The overlay with dilution of about 6% supported the maximum temperatures stipulated by the standard, 85 °C. While clads with dilutions of about 12% and 13% showed 55°C and 50°C TCP, respectively. Other overlays with dilutions over 20% failed in 45 °C. The corrosion mechanism apparently was initiated along solidification grain boundaries and/or in the interface between the precipitates and the matrix