Estudo de imobilização da lipase do tipo B de Candida antarctica em silicato mesoporoso nanoestruturado (SBA-15) visando a aplicação em reações de elevado interesse industrial

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Rios, Nathalia Saraiva
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/15880
Resumo: A recombinant Candida antarctica lipase B expressed in Pichia pastoris by insertion of an external DNA (LIPB) was i mmobilized in nanostructured mesoporous silicas of SBA - 15 type by physical adsorption (SBA - 15 - LIPB) and covalent attachment (SBA - 15 - APTES - GA - LIPB e SBA - 15 - APTES - DVS - LIPB ) . Influence of contact time enzyme - support and the medium pH were ev aluated to the production of biocatalyst s . T he thermal stability of immobilized enzymes were evaluated and the results showed that the SBA - 15 - APTES - GA - LIPB has the best thermal stability with t 1/2 = 36,91 min while the SBA - 15 - APTES - DVS - LIPB has t 1/2 = 11,83 min and the SB A - 15 - LIPB has t 1/2 = 8,5 min, a t 50 ºC . However, the SBA - 15 - LIPB has high stability in organic solvents than the biocatalysts produced by covalent attachment. Therefore, the biocatalyst SBA - 15 - LIPB (Optimized conditions: 100 % of the recovery activity an 1 hour of contact time, pH 7) was applied in a model esterification reaction in the short chain esters synthesis, the methyl and ethyl butyrate. The results showed that in optimized conditions of esterification (temperatur e: 37 ᵒ C, solvent type: hexane for the methyl butyrate and isooctane for ethyl butyrate synthesis, substrate concentration: 0,2 mol/L, molar ratio of substrates 1:1, time of reaction: 12 h) the conversions were: 79.25 % for the methyl butyrate synthesis an d 86.52 % for ethyl butyrate synthesis. The biocatalyst SBA - 15 - LIPB exhibited high activity and operational stability on the methyl and ethyl butyrate synthesis by esterification after five and six successive cycles of 12 h each, respectively. The biocatalysts SBA - 15 - APTES - GA - LIPB and SBA - 15 - APTES - DVS - LIPB were applied in a model hydrolysis reaction in the kinetic resolution of the phenylethyl acetate . The experimental data showed that were obtained positive results for both biocatalysts, but t he biocatalyst SBA - 15 - APTES - GA - LIPB was more efficient, producing enantiomeric excess 99 %, conversio n 50 % and enantiomeric ratio 1057.