Análise de modelos de séries temporais para a previsão mensal do imposto de renda

Detalhes bibliográficos
Ano de defesa: 2003
Autor(a) principal: Santos, Alan Vasconcelos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/5113
Resumo: The main objective of this work was to generate predictions, at a monthly frequency, from 1990 to 2001, of income tax revenue. The methodology used was the one of forecast combining. Specifically, exponential smoothing, an ARIMA and VAR with error correction models were pooled to obtain final prediction. Ex-post forecast errors were used to test the performance of the model. Results indicated that combining performs better than individual models, and errors are in an acceptable interval for this type of prediction.