Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Costa, Camila Ferreira |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/13358
|
Resumo: |
In this thesis we study the problems of processing a variation of nearest neighbors and of routing planning queries in time-dependent road networks, i.e., one where travel time along each edge is a function of the departure time. We first study the problem of finding the k points of interest (POIs), for example, museums or restaurants, in which a user can start to be served in the minimum amount of time, accounting for both the travel time to the POI and the waiting time there, if it is closed. Previous works have proposed solutions to answer k-nearest neighbor queries considering the time dependency of the network but not the operating times of the points of interest. We propose and discuss three solutions to this type of query which are based on the previously proposed incremental network expansion and use the A* search algorithm equipped with suitable heuristic functions. We also present experimental results comparing the number of disk access required in each solution with respect to a few different parameters. In the second query, we aim at finding the optimal route that connects a origin to a destination and passes through a number of POIs in a specific sequence imposed on the categories of the POIs. Previous works have addressed this problem, but they do not consider the time dependency of the network. We propose an optimal sequenced route query algorithm which performs an incremental network expansion adopting an A* search. Furthermore, as an OSR query on road network tends to re-expand an extremely large number of nodes, we propose a scheme to reduce the re-expansions. For comparison purposes, we also present a baseline solution which was obtained by extending the previously proposed progressive neighbor exploration algorithm to cope with the time-dependent problem. We performed experiments in synthetic networks comparing the proposed solutions according to the number of expanded vertices in the search and the processing time of the queries. |