Sistemas de comunicação quântica usando interferômetro de Sagnac e dinâmica do entrelaçamento de estados bipartites de qubitis em canais ruidosos

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Brito, Wellington Alves de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/16109
Resumo: This work is divided into two parts. In the first one, the use of the Sagnac interferometer in quantum information is analyzed applying it in three problems: interaction-free measurement, quantum key distribution, and secret sharing. For the interaction-free measurement two systems using Sagnac interferometer were proposed. Considering ideal detectors and loss less devices, one of them has a success probability of 25% for each photon used while the other presents the probability of getting success to detect the presence of the object close to 100% for each photon used. For quantum key distribution, it was proposed a different setup, where the main difference is that the pulse sent by the transmitter does not come back to him/her as happen with the systems based on Sagnac proposed before. This avoids the Trojan horse attack. Finally, it was proposed an optical configuration where it is possible to share a secret among five users, locally distant, that could be used only when all five persons agreed. The second part of this dissertation presents an analytical and numerical study of the entanglement variation of bipartite states of qubits during propagation in a quantum noisy channel. Particularly, it was found an exactly formula which relates the entanglement of states in the input and output of the channel, when the input state is pure and the channel is modeled by a canonical unitary operation.